Сверхмощные унч схемы на имс. Усилитель низкой частоты (УНЧ) на микросхеме TDA7250. Видео работы умзч

Современные интегральные УМЗЧ класса D совмещают, казалось бы, несовместимое: высокий КПД и низкий коэффициент нелинейных искажений. В настоящей статье описаны основное принципы работы усилителей класса D и приведено описание линейки микросхем УМЗЧ американской фирмы MPS (Monolithic Power Systems).

В последнее время в схемотехнике усилителей мощности (УМЗЧ) получили развитие два взаимоисключающих направления:

Улучшение субъективного качества воспроизведения звука, как правило, за счет уменьшения экономичности (КПД) усилителя;

Повышение экономичности усилителя и уменьшение его размеров при сохранении высоких качественных показателей.

Первое направление характерно использованием в выходных каскадах УМЗЧ мощных полевых транзисторов и радиоламп (Hi-End), работающих очень часто в режимах класса А.

Второе направление характерно для носимой и автомобильной звуковоспроизводящей аппаратуры. Именно в реализации этого направления широко используются усилители класса D, а в высококачественной звуковоспроизводящей стационарной аппаратуре класс D используется чаще всего в усилителях для сабвуфера. Всего существует пять основных классов режимов работы активных элементов (транзисторов или ламп).

Это режимы работы класса А, В, АВ, С и D. Вспомним их особенности.

Режим работы класса А
Активный элемент (транзистор или лампа) открыт весь период сигнала. Усилители мощности класса А вносят минимальные искажения в усиливаемый сигнал, по имеют очень низкий К11Д. Они используются в од-потактпых и двухтактных УМЗЧ для среднечастотных динамиков и твитеров, где особенно важно, чтобы уровень нелинейных искажений был низким. Усилители класса А - самые дорогие.

Режим работы класса В
Активный элемент (транзистор или лампа) открыт только один полупериод входного сигнала. Усилители класса в имеют высокий кпд. но и коэффициент нелинейных искажений у них заметно выше. Обычно используются в двухтактных УМЗЧ для срсднсчастотных динамиков и динамиков mid-bass.

Режим работы класса АВ
Активный элемент (транзистор или лампа) и этом режиме открыт один полупериод полностью и часть другого полупериода входного сигнала. Режим класса АВ - это нечто среднее между классами А и В. Усилители класса АВ имеют более высокий кпд. чем усилители класса А, но вносят в сигнал меньшие нелинейные искажения, чем усилители класса В. Это наиболее распространенный класс массовых УМЗЧ.

Режим работы класса С

Класс С - это работа транзисторов при маленькой амплитуде напряжения запирания ниже, чем напряжение смещения. В этом случае амплитуда звукового сигнала меньше, чем напряжение смещения. В таком состоянии транзистор проводит только верхнюю часть положительной полуволны, что сильно искажает сигнал. Поэтому в аудио усилителях, этот класс не применяется. Такой режим работы транзисторов имеет высокий КПД (около 85%).

Режим работы класса D
В режиме работы класса D происходит преобразование входного сигнала в импульсы прямоугольной формы одинаковой амплитуды, длительность которых пропорциональна значению сигнала в каждый заданный момент времени (т.н. ШИМ — широтно-импульсная модуляция). Активные элементы выходного каскада при этом работают в ключевом режиме и имеют два состояния: транзистор или заперт, или полностью открыт. Усилители класса D имеют максимальный КПД, т.к. основные потери энергии па выходных мощных ключах происходят только в момент переключения, в открытом состоянии потери энергии минимальны и будут чем меньше, чем меньше сопротивление открытого ключа. Обычные усилители класса D имеют КПД более 90% и достаточно большой коэффициент нелинейных искажений (около 10%), по применение новых технологий (ноу-хау производителей) позволяет снизить коэффициент нелинейных искажений до долей процента. Это заметно расширило область применения класса D в современных УМЗЧ.

Основные принципы работы УМЗЧ класса D
Принципиальная схема простейшего УМЗЧ класса D показана на рис. 1.

Рис. 1

Он состоит из широтно-импульсного модулятора (ШИМ) на транзисторе Q1, двухтактного мощного транзисторного ключа Q2, Q3 и фильтра нижних частот (ФНЧ), который отфильтровывает импульсные высокочастотные составляющие тока через громкоговоритель. Делитель па резисторах R1 и R2 задаст напряжение смещения Q1 и симметрию всей схемы. R3 - резистор нагрузки транзистора Ql. R4, С4 - цепь эмиттерной термостабилизации этого транзистора. С1 - конденсатор фильтра питающего напряжения. C5, R5, L1. C6 - фильтр нижних частот (ФНЧ). С7 - разделительный конденсатор. В состав усилителя класса D входит также генератор треугольного или пилообразного напряжения.

Частота работы этого генератора лежит, как правило, в пределах 200...600 кГц. Размах «пилы» от генератора и коэффициент усиления каскада на Q1 выбраны так, чтобы выходные транзисторные ключи Q2 и Q3 открывались попеременно до насыщения при переходе напряжения «пилы» через ноль. Эпюры напряжений, поясняющие работу этой схемы. показаны па рис. 2 . До момента времени А (см. рис. 2) звуковой сигнал па входе отсугствует. «Пила* абсолютно симметрична, и па эмиттерах транзисторов Q2 и Q3 образуются симметричные прямоугольные импульсы -меандр. При подаче па вход усилителя сигнала НЧ «пила» будет смещаться вверх или вниз. Изменятся моменты отпирания транзисторов и, как следствие, длительность выходных импульсов и пауза между ними (см. рис. 2). Эти параметры будут изменяться по закону входного низкочастотного (звукового) сигнала. Полученный импульсный сигнал с переменной скважностью называют широтно-имиульспым, или ШИМ-сигиалом, а процесс его получения — широтпо-импульсной модуляцией (ШИМ). ШИМ-сигпал содержит НЧ-составляющую. по форме повторяющую модудирующий сигнал. Если ШИМ-сигнал с выхода транзисторных ключей пропустить через ФНЧ, то он пропустит эту составляющую на громкоговоритель и подавит ВЧ-составляющие ШИМ-сигпала. За счет неполного подавления ВЧ-составляющсй переменное напряжение на громкоговорителе будет несколько изрезанным, что можно увидеть па увеличенном фрагменте к нижнему графику рис. 2 . Изрезанность уменьшается с увеличением частоты генератора ШИМ, улучшением качества ФНЧ и применением некоторых ноу-хау, которые тщательно оберегают фирмы -производители микросхем усилителей класса D.

Усилители класса D на биполярных транзисторах ушли в прошлое. Основой современного УМЗЧ класса D являются мощные ключи па МДП-транзисторах, отличающиеся высоким быстродействием и низким сопротивлением канала в открытом состоянии. При использовании таких транзисторов в ключевом режиме достигается высокий КПД. Две практические схемы УМЗЧ класса D на МДП-транзисторах и операционном усилителе приведены в статье .

Настоящий бум в использовании режима работы класса D в УМЗЧ начался с появления таких специализированных микросхем, как ZXCD1000 фирмы Zeiex |2|, и ряда других. Эти микросхемы называют драйверами усилителей класса D. Они содержат ШИМ с генератором «пилы» частотой 2200 кГц и обеспечивают управление внешними ключами на МДП-траизисторах. Многие из этих драйверов могут управлять четырьмя внешними выходными ключами па МДП-транзисторах, включённых мостом.

Следующим этапом в развитии УМЗЧ класса D стало создание микросхем, в которые интегрирован не только драйвер, но и выходные ключи па МДП-траизисторах. Именно к таким микросхемам относятся МР7720, МР7731 и МР7781 фирмы MPS (Monolithic Power Systems). Все они монофонические. О номинальной выходной мощности говорит предпоследняя цифра в наименовании: МР7720 - 20 Вт, МР7731 - 30 Вт, МР7781 - 80 Вт. Пиковая выходная мощность этих микросхем вдвое больше. Рассмотрим особенности и схемы включения каждой из них.

ОСНОВНЫЕ ДОСТОИНСТВА

  • Аудиоусилители от MPS с выходной мощностью до 80 Вт в корпусе S0IC24 не требуют внешнего теплоотвода
  • Глубокая обратная связь, а также интегрированные мощные полевые транзисторы позволяют достичь качества звука на уровне усилителей класса АВ
  • Стабильная выходная мощность в широком диапазоне питающих напряжений
  • Однополярное питание
  • Минимальная внешняя обвязка
  • Коэффициент нелинейных искажений менее 0.1%
  • Расширенный диапазон температур -40...+85°С

Микросхема УМЗЧ МР7720
Микросхема МР7720 выпускается в корпусах SOIC8 (для поверхностного монтажа) и PDIP8, которые имеют по 8 выводов и одинаковую цоколёвку, или, как сейчас принято говорить, распиповку. УМЗЧ на этой микросхеме имеет поминальную мощность 20 Вт при сопротивлении нагрузки 4 Ом и напряжении питания 24 В. Диапазон воспроизводимых частот -20 Гц....20 кГц. Он имеет КПД 90% при нелинейных искажениях не более 0.1% для всего диапазона частот и выходной мощности 1 Вт (0,06...0,07% для частоты 1 кГц). Напряжение питания 7,5...24 В. В микросхему встроены дна выходных ключа па МДП-транзисторах, которые включены последовательно по питанию (полумост).

Рис. 3

Типовая принципиальная схема УМЗЧ класса D па микросхеме МР7720 изображена па рис. 3 . а назначение выводов згой микросхемы приведено в таблице 1 .

Таблица 1 . Назначение выводов микросхемы МР7720

Схема включения этой микросхемы очень напоминает ОУ или УМЗЧ на микросхемах, которые работают в привычных режимах классов А, В или АВ. Микросхема U1 МР7720 имеет дифференциальный вход (выводы 1 и 2), его положительный (неивертирующий) вывод в данной схеме используется как вход напряжения смещения, который задаёт режим микросхемы, а главное - симметрию схемы. Напряжение смещения на неивертирующем входе (вывод 1) должно быть равно половине напряжения питания, оно формируется делителем R3, R2. Конденсатор С2 блокирует этот вывод по переменному напряжению. Следует заметить, что асимметрия схемы может привести к увеличению нелинейных искажений и даже к перегреву одного из выходных ключей и выходу микросхемы из строя. Входной сигнал поступает на инвертирующий вход микросхемы (вывод 2) через разделительный конденсатор С1 и ограничивающий резистор R1. В позиции С1 фирма - разработчик микросхемы рекомендует использовать керамический конденсатор типов NPO, X7R, X5R или эквивалентных им типов. Коэффициент усиления по напряжению микросхемы определяется соотношением номиналов резисторов цепи ООС R1 и R4 и может быть рассчитан по формуле:
KU=R4/R1.

Для повышения размаха выходных импульсов микросхемы используется известная по обычным двухтактным бестрансформаторным усилителям схема повышения КПД с конденсатором вольтодобавки С7, который включён между выходом (выводом 7) и входом цепи вольтодобавки (вывод 5). Ёмкость конденсатора С7 выбирается в пределах 0,1...1 мкФ. Для защиты внутренних цепей микросхемы от перегрузки параллельно С7 подключён стабилитрон D2 с напряжением стабилизации 6,2 В. Для выделения усиленного сигнала и подавления высокочастотных импульсных составляющих в нагрузке к выходу (вывод 7) подключён ФПЧ, состоящий из дросселя L1 и конденсатора С8. Конденсатор С9 - разделительный. Диод Шоттки D1 гасит индукционные токи и выбросы ЭДС, возникающие в L1 в моменты переключения выходных ключей, когда оба ключа заперты. Частота ШИМ-преобразования задаётся цепью обратной связи R4, СЗ, и при указанных на схеме номиналах она составляет 600 кГц. При большей частоте увеличиваются потери мощности, а при меньшей - нелинейные искажения. С4 - конденсатор ООС по высокой частоте. Конденсаторы Сб, С5 - развязывающие фильтра питания. Для устранения прохождения импульсной помехи по цепям питания конденсатор С5 должен быть расположен между выводами 6 и 8 микросхемы, причём как можно ближе к этим выводам. Упрощённо работу этого УМЗЧ можно объяснить следующим образом. Входной сигнал через Cl, R1 поступает на инвертирующий вход микросхемы (вывод 2). Это приводит к изменению длительности и скважности импульсов частотой 600 кГц на выходе микросхемы (вывод 7) по закону изменения моментального значения входного сигнала и к появлению в выходном сигнале усиленной НЧ-составляющей, повторяющей по форме входной сигнал, которая через ФНЧ L1, C8 и разделительный конденсатор С9 поступает на громкоговоритель. Добавить к этому можно только то, что входной и выходной сигналы противофазны.

Микросхема УМЗЧ МР7731

Микросхема МР7731 выпускается в корпусе TSSOP20F для поверхностного монтажа, который имеет 20 выводов и металлическую контактную площадку сверху для теплового контакта с радиатором. Номинальная мощность УМЗЧ на микросхеме МР7731 составляет 30 Вт при сопротивлении нагрузки 4 Ом и напряжении питания 16 В. Диапазон воспроизводимых частот 20 Гц..„20 кГц. КПД 90% при выходной мощности 5 Вт. Нелинейные искажения не более 0,1% для всего диапазона частот при выходной мощности 1 Вт. Напряжение питания 7,5 --.24 В. В микросхему" встроены четыре выходных ключа на МДП-транзисторах, которые включены мостом. Особенностью монофонических мостовых УМЗЧ является то, что они имеют два, как правило, равноценных усилительных канала с выходными ключами, которые включены полумостом. То есть микросхема МР7731 содержит два канала, близких по структуре к микросхеме МР7720. Соль в том, что эти каналы работают в противофазе, а нагрузка (громкоговоритель) подключена без разделительных конденсаторов между выходами этих каналов, т.к. постоянное напряжение на каждом из выводов выхода равно половине напряжения питания. Для противофазного управления обычно используется включение каналов методом «ведущий - ведомый» (Master - Slave), т.е. оба усилителя включены по входному сигналу последовательно (см. рис. 4 ).

Рис. 4.

С1, С2 - разделительные конденсаторы. R1. R2-делитель напряжения сигналов, L1, СЗ и L2, С4-ФНЧ

Для такого включения оба канала должны быть инвертирующими усилителями. Сигнал на второй канал поступает с выхода первого через делитель Rl, R2 (см. рис. 4 ) или ограничивающий резистор.


Рис. 5

Типовая принципиальная схема УМЗЧ класса D на микросхеме МР7731 изображена на рис. 5 , а назначение выводов этой микросхемы приведено в таблице 2 .

Таблица 2

Номер вывода Обозначение Назначение
1 NC Не используется
2 PIN1 Неинвертирующий вход канала 1. Используется как вход напряжения смещения (опорного напряжения)
3 NIN1 Инвертирующий вход канала 1
4 AGND1 Корпус аналоговой части 1
5 NC Не используется
6 EN1 Вход разрешения канала 1. Высокий уровень - МС включена. Низкий уровень - выключена
7 NIN2 Инвертирующий вход канала 2
8 PIN2 Неинвертирующий вход канала 2. Используется как вход напряжения смещения (опорного напряжения)
9 AGND2 Корпус аналоговой части 2
10 EN2 Вход разрешения канала 2. Высокий уровень - МС включена. Низкий уровень - выключена
11 NC Не используется
12 BS2
13 VPP2 Вход напряжения питания канала 2 (7,5…24 В
14 SW2 Выход канала 2
15 PGND2 Корпус цепей питания 2
16 NC Не используется
17 BS1
18 VPP1
19 SW1 Выход канала 1
20 PGND1 Корпус цепей питания 1

Разберёмся в назначении деталей УМЗЧ на микросхеме МР7731 по схеме (рис. 5). Напряжение смещения на неивер-тирующих входах обоих каналов (выводы 2 и 8), равное половине напряжения питания, формируется делителем R2, R5. Конденсатор 09 шунтирует эти выводы по переменному напряжению, а конденсаторы С54 и С41 задают частоты ШИМ-преобразования 1-го и 2-го каналов соответственно. Эти конденсаторы должны быть расположены как можно ближе к выводам, возле которых они нарисованы на схеме. С53 - конденсатор фильтра питания, а С55 и С42 -развязывающие конденсаторы, которые также надо располагать как можно ближе к выводам, возле которых они нарисованы. Входной сигнал поступает на инвертирующий вход канала 1 (вывод 3) через разделительный конденсатор С35 и ограничивающий резистор R16. Коэффициент усиления по напряжению канала 1 микросхемы определяется соотношением сопротивлений резисторов цепи ООС R14hR16, а канала 2 - соотношением R44 и R34. ООС по ВЧ в канале 1 осуществляется через конденсатор С29. а в канале 2 - через С34. Конденсатор С37 - это конденсатор вольтодобавки канала 1, а С22 - конденсатор вольтодобавки канала 2. Они повышают КПД усилителя. Параллельно этим конденсаторам подключены стабилитроны D13 и D15 с напряжением стабилизации 6,2 В. Усиленный выходной сигнал звука выделяется в ФИЧ на выходах каналов 1 (L4, С47) и 2 (L3, С43) и поступает на громкоговоритель. ФИЧ подавляют высокочастотные импульсные составляющие ШИМ-сиг-нала на выходах микросхемы и не пропускают их в нагрузку. Диоды Шоттки D6, D8 гасят индукционные токи и выбросы ЭДС, возникающие в катушках L4 и L3 в моменты переключения выходных ключей, когда все они запираются. Эти катушки должны быть рассчитаны на номинальный ток 2,6 А. Каждый из каналов имеет свой вход разрешения EN1 (вывод 6) и EN2 (вывод 10). При низком уровне напряжения на этих выводах микросхема будет находиться в дежурном режиме, а при высоком - в рабочем.

Микросхема УМЗЧ МР7781

Микросхема МР7781 выпускается в корпусе SOIC24 для поверхностного монтажа, который имеет 24 вывода и металлическую площадку сверху для теплового контакта с радиатором. Поминальная мощность монофонического УМЗЧ на микросхеме МР7781 80 Вт при сопротивлении нагрузки 4 Ом и напряжении питания 24 В. Диапазон воспроизводимых частот 20 Гц....20 кГц. КПД 95% при выходной мощности 80 Вт. Нелинейные искажения не более 0,1% для всего диапазона частот при выходной мощности 1 Вт. Напряжение питания 7,5 -.24 В. В микросхему встроены четыре выходных ключа на МДП-транзисторах, которые включены мостом. Микросхема МР7781 имеет два равноценных усилительных канала с дифференциальными входами и выходными МДП-ключами, которые включены полумостом. Микросхема содержит два канала усиления, каждый из которых заканчивается полумостом на МДП-транзисторах. Все это напоминает МР7731, но в отличие от этой микросхемы, в типовом включении МР7781 используется схема, которую можно назвать параллельно-последовательным включением каналов усиления (см. рис. 6 ). В этой схеме входной сигнал поступает сразу на входы обоих каналов усиления. Причём в одном канале он поступает на неинвертирующий вход, а в другом - на инвертирующий. Поэтому к верхнему и нижнему выводам громкоговорителя прикладываются одинаковые по амплитуде, но противофазные напряжения сигналов, что видно из графиков, показанных на схеме (рис. 6 ). Соотношения сопротивлений ограничивающего резистора R1 и резисторов делителей цепей ООС R2, R3, R4, R5 определяют коэффициент усиления схемы. Через делители R2, R3 и R4, R5 задаются также напряжения смещения на входах и осуществляются отрицательные обратные связи (ООС) по постоянному напряжению, которые стабилизируют режим каналов усиления, т.е. эти делители задают постоянные напряжения на выходах каналов, равные половине напряжения питания, и за счёт ООС поддерживают их неизменными.

Рис. 6. Упрощенная схема УМЗЧ с мостовым выходом (с параллельно-последовательным управлением)

С1 - разделительный конденсатор,
R1 - ограничивающий резистор,
R2, R3 и R4, R5 - делители цепей 00С по постоянному и переменному напряжению,
L1, С2 и L2, СЗ - ФНЧ

Микросхема МР7781 имеет более сложную внутреннюю организацию, чем рассмотренные выше микросхемы. Это косвенно подтверждается количеством и назначением выводов микросхемы, что отражено в таблице 3 .

Таблица 3 . Назначение выводов микросхемы МР7781

Номер вывода Обозначение Назначение
1 DR1 Выход управления стабилизатором напряжения питания низковольтной части канала 1
2 NC Не используется (рекомендуется подключать к выводу 1 или 3)
3 GND Корпус внутреннего модулятора
4 AI2 Неинвертирующий вход канала 2
5 BI2 Инвертирующий вход канала 2 (вход AUDIO и ООС)
6 MO2 Выход внутреннего ШИМ+канала 2 (с открытым стоком)
7 SHDN2 Вход разрешения канала 2. Активный уровень - низкий
8 BS2 Вход цепи вольтодобавки канала 2
9 GND Корпус цепей питания канала 2
10 SW2 Выход канала 2
11 V+ Вход напряжения питания ШИМ (7,5…24 В)
12 M2 Вход сигнала ШИМ на предоконечный каскад канала 2
13 DR2 Выход управления стабилизатором напряжения питания низковольтной части канала 2
14 NC Не используется
15 V+ Вход напряжения питания канала 2 (7,5…24 В)
16 MO1 Выход внутреннего ШИМ+канала 1 (с открытым стоком)
17 AI1 Инвертирующий вход канала 1 (вход ООС)
18 BI1 Неинвертирующий вход канала 1 (вход AUDIO)
19 SHDN1 Вход разрешения канала 1. Активный уровень + низкий
20 BS1 Вход цепи вольтодобавки канала 1
21 GND Корпус цепей питания
22 SW1 Выход канала 1
23 V+ Вход напряжения питания канала 1 (7,5…24 В)
24 M1 Вход сигнала ШИМ на предоконечный каскад канала 1

Типовая принципиальная схема УМЗЧ на микросхеме МР7781 показана на рис. 7 . Входной сигнал подаётся на выводы 5 и 18 микросхемы через ограничивающий резистор R20 и разделительный конденсатор С25. Резисторы R3, R5, R7, R17, R19, R21, R12, R8 и конденсаторы Сб, С24, С9, С15 входят в цепи ООС по постоянному и переменному напряжению. Эти цепи задают коэффициент усиления микросхемы и постоянные напряжения, равные половине напряжения питания, в средних точках, т.е. на выходах каналов мостового УМЗЧ (выводы 10 и 22 микросхемы). Конденсатор СЮ в канале 1 и С18а в канале 2 - конденсаторы вольтодобав-ки, которые необходимы для повышения КПД усилителя.

Рис. 7. Принципиальная схема УМЗЧ класса D на микросхеме МР7781

LI, C2, L2, C2, C13, R2, C5, R18, C23 - это детали ФПЧ, которые пропускают на громкоговоритель сигнал звука и подавляют импульсные ВЧ-состав-ляющие сигнала ШИМ. Катушки ФПЧ L1 и L2 должны быть рассчитаны на номинальный ток 5 А. Оптимальная частота ШИМ-преобразования для микросхемы МР7781 составляет 400 кГц. Она определяется ёмкостью конденсатора СИ, который включён между выводами дифференциальных входов этой микросхемы (между соединёнными по два выводами 5, 18 и 4, 17). Гашение выбросов ЭДС и индукционных токов, возникающих в катушках ФНЧ L1 и L2 в моменты пе-реключения выходных ключей, когда все они заперты, осуществляется диодами Шоттки D1 и D5.

Каждый из каналов имеет вход разрешения (активный уровень низкий). Вывод 19 (SIIDN1) - это вход разрешения канала 1, а вывод 7 (SIIDN2) - вход разрешения канала 2. Эти выводы соединены вместе. Высокий уровень (сигнал запрета) формируется с помощью параметрического стабилизатора R6, D3. При этом уровне усилитель отключён и находится в режиме MUTE, который характерен малым током потребления (

Чтобы получить столь малый ток потребления в режиме MUTE, в микросхему встроены стабилизаторы питания низковольтной части и схема их коммутации. Сигналы управления этой схемы выводятся из микросхемы через выводы 1 (DR1) и 13 (DR2), а затем через коммутирующие диоды D2 и D4 поступают соответственно на выводы 20 (BS1) и 8 (BS2). Кроме того, в рабочем режиме высокий уровень управляющего сигнала с вывода 13 (DR2) открывает ключ на биполярном транзисторе Q1. Через этот транзистор напряжение питания поступает в точку соединения резисторов R1 и R11. У микросхемы МР7781 есть ещё четыре интересных вывода. Это выводы 16 (MOl), 24 (Ml), 6 (М02) и 12 (М2). MOl и М02 - это выходы широтно-импульсных модуляторов соответствующих каналов, a Ml и М2 - это входы выходных ключей микросхемы. Выводы МО и М с одинаковыми номерами соединены между собой. Кроме того, выходы MO1 и МО2 имеют открытый сток. Подтягивающие резисторы (резисторы внешней нагрузки), подключённые между этими выводами и напряжением питания на эмиттере транзистора Q1, - это известные уже резисторы R1 и Rl 1. C1 - конденсатор фильтра питания, а конденсаторы СЗ, С12, С16, С8, С10, С14 и С18 - развязывающие. Для улучшения развязки и уменьшения наводок их рекомендуется устанавливать как можно ближе к соответствующим выводам микросхемы. Для устранения характерного для УМЗЧ щелчка при включении в схему установлены конденсаторы С7 и С9.

Для обеспечения стабильности работы и повторяемости схемы резисторы R3, R5, R7, R17, R19, R21 и R12 должны иметь допуск 1%. Такой же допуск должен иметь и резистор R6.

Следует заметить, что все три микросхемы, представленные в этой статье, имеют встроенную температурную защиту и защиту от коротких замыканий по выходу. Основные особенности и параметры этих микросхем сведены в таблицу 4.

Таблица 4 . Особенности микросхем УМЗЧ класса D фирмы NIPS

Особенности Микросхемы
MP7720 MP7731 MP7781
Номинальная мощность при ипит = 24 В и нагрузке 4 Ом, Вт 20 80
Коэффициент нелинейных искажений (THD+N) на частоте 1 кГц при выходной мощности 1 Вт, % 0,1 0,1 0,2
КПД, % 90 (при 20 Вт) 90 (при 5 Вт) 95 (при 80 Вт)
Частота преобразования ШИМ, кГц 600 600 400
Напряжение питания, В 7,5…24 7,5…24 7,5…24
Эффективное напряжение входного сигнала, В 1 1 1
Выход Полумост Мост Мост
Сопротивление канала выходных МДП+ключей в состоянии насыщения, Ом 0,180 0,180 0,105
Динамический диапазон, дБ 93 80 90
Корпус SOIC8 или PDIP8 TSSOP20F SOIC24

Коэффициент нелинейных искажений, указанный в таблице, достижим и гарантируется только на частоте 1 кГц при выходной мощности 1 Вт. С ростом частоты и мощности он повышается. Зависимость коэффициента нелинейных искажений микросхемы МР7720 от мощности (при частоте сигнала 1 кГц, напряжении питания 24 В и сопротивлении нагрузки 4 Ом) изображена на рис. 8 а, а от частоты сигнала (при напряжении питания 24 В, сопротивлении нагрузки 4 Ом и мощности 19,6 Вт) - на рис. 8 б.

Рис. 8. Зависимость коэффициента нелинейных искажений микросхемы МР7720:

а) от мощности при частоте сигнала 1 кГц, напряжении питания 24 В и сопротивлении нагрузки 4 Ом;
б) от частоты при напряжении питания 24 В, сопротивлении нагрузки 4 Ом и мощности 19,6 Вт

В заключение хочу заметить, что существует ещё несколько разновидностей усилителей с ШИМ. Во-первых, это усилитель «класса Т», широтно-импульсный модулятор которого меняет не только скважность, но и частоту выходного ШИМ-сигнала. Во-вторых, это так называемый усилитель «класса N», информацию о котором можно найти в статье . Это также усилитель, работающий в ключевом режиме, но совмещённый с сетевым блоком питания.

Дополнительную информацию о микросхемах производства Monolithic Power Systems можно найти на сайте фирмы .

Литература
1. Савельев Е. Усилитель класса D для сабвуфера. Радио. 2003. № 5.
2. Дайджест «Новая техника и технология». Радиохобби. 2001. № 2. С. 9.
3. Калганов А. Автомобильный УМЗЧ с блоком питания. Радио. 2002. № 7. С. 20...22.
4. monolithicpower.com

СОВРЕМЕННАЯ ЭЛЕКТРОНИКА Октябрь 2004 Игорь Безверхний (г. Киев, Украина)

Довольно простая, Повторить ее сможет даже человек, не очень сильный в электротехнике. УНЧ на этой микросхеме будет идеальным для использования в составе акустической системы для домашнего компьютера, телевизора, кинотеатра. Преимущество его в том, что не требуется тонкая наладка и настройка, как в случае с транзисторными усилителями. А уж что говорить про отличие от ламповых конструкций - габариты намного меньше.

Не требуется высокого напряжения для питания анодных цепей. Конечно, присутствует нагрев, как и в ламповых конструкциях. Поэтому в том случае, если планируется использование усилителя на протяжении долгого времени, лучше всего установить кроме алюминиевого радиатора еще и хотя бы небольшой вентилятор для осуществления принудительного обдува. Без него на микросборке TDA7294 схема усилителя будет работать, но велика вероятность перехода в защиту по температуре.

Почему TDA7294?

Эта микросхема пользуется большой популярностью уже более 20 лет. Она завоевала доверие у радиолюбителей, так как у нее очень высокие характеристики, усилители на ее основе простые, повторить конструкцию сможет любой, даже начинающий радиолюбитель. Усилитель на микросхеме TDA7294 (схема приведена в статье) может быть как монофоническим, так и стереофоническим. Внутреннее устройство микросхемы состоит из Усилитель звуковой частоты, построенный на этой микросхеме, относится к классу АВ.

Достоинства микросхемы

Преимущества использования микросхемы для :

1. Очень большая мощность на выходе. Порядка 70 Вт, если нагрузка имеет сопротивление 4 Ом. В данном случае применяется обычная схема включения микросхемы.

2. Около 120 Вт при нагрузке 8 Ом (в мостовой схеме).

3. Очень низкий уровень посторонних шумов, искажения несущественные, воспроизводимые частоты лежат в диапазоне, полностью воспринимаемом человеческим ухом — от 20 Гц до 20 кГц.

4. Питание микросхемы может производиться от источника постоянного напряжения 10-40 В. Но есть небольшой недостаток — необходимо использовать двухполярный источник питания.

Стоит обратить внимание на одну особенность — коэффициент искажений при этом не превышает 1 %. На микросборке TDA7294 схема усилителя мощности настолько простая, что даже удивительно, как она позволяет получить такое качественное звучание.

Назначение выводов микросхемы

А теперь более подробно о том, какие выводы имеются у TDA7294. Первая ножка — это «сигнальная земля», соединяется с общим проводом всей конструкции. Выводы «2» и «3» — инвертирующий и неинвертирующий входы соответственно. «4» вывод также является «сигнальной землей», соединенной с общим проводом. Пятая ножка в усилителях звуковой частоты не используется. «6» ножка - это вольт-добавка, к ней подключается электролитический конденсатор. «7» и «8» выводы — плюс и минус питания входных каскадов соответственно. Ножка «9» — режим ожидания, используется в блоке управления.

Аналогично: «10» ножка - режим приглушения, также применяется при конструировании усилителя. «11» и «12» выводы не используются в конструкции усилителей звуковой частоты. С «14» вывода снимается выходной сигнал и подается на акустическую систему. «13» и «15» выводы микросхемы — это «+» и «-» для подключения питания выходного каскада. На микросхеме TDA7294 схема ничем не отличается от предложенных в статье, дополняется она только который соединяется со входом.

Особенности микросборки

При конструировании усилителя звуковой частоты нужно обращать внимание на одну особенность — минус питания, а это ножки «15» и «8», электрически связаны с корпусом микросхемы. Поэтому необходимо изолировать его от радиатора, который в любом случае будет использоваться в усилителе. Для этой цели необходимо использовать специальную термопрокладку. Если используется мостовая схема усилителя на TDA7294, обращайте внимание на вариант исполнения корпуса. Он может быть вертикального или горизонтального типа. Наиболее распространенным является вариант исполнения, обозначаемый как TDA7294V.

Защитные функции микросхемы TDA7294

В микросхеме предусмотрено несколько видов защиты, в частности, от перепада питающего напряжения. Если вдруг изменится напряжение питания, то микросхема уйдет в режим защиты, следовательно, не будет электрического повреждения. Выходной каскад также имеет защиту от перегрузок и короткого замыкания. Если корпус прибора нагревается до температуры 145 градусов, отключается звук. При достижении 150 градусов происходит переход в режим ожидания. Все выводы микросхемы TDA7294 защищены от электростатики.

Усилитель мощности

Просто, доступно каждому, а самое главное — дешево. Буквально за несколько часов вы можете собрать очень хороший усилитель звуковой частоты. Причем большую часть времени вы потратите на то, чтобы осуществить травление платы. Структура всего усилителя состоит из блоков питания и управления, а также 2-х каналов УНЧ. Старайтесь как можно меньше проводов использовать в конструкции усилителя. Придерживайтесь простых рекомендаций:

1. Обязательное условие — это подключение источника питания проводами к каждой плате УЗЧ.

2. Свяжите питающие провода в жгут. С помощью этого получится немного компенсировать магнитное поле, которое создается электрическим током. Для этого необходимо взять все три питающих провода — «общий», «минус» и «плюс», с небольшим натяжением сплести их в одну косичку.

3. Ни в коем случае не используйте в конструкции так называемые «земляные петли». Это случай, когда общий провод, соединяющий все блоки конструкции, замыкается в петлю. Провод массы необходимо подводить последовательно, начиная от входных далее к плате УЗЧ, и заканчиваться должен на выходных разъемах. Крайне важно входные цепи подключать при помощи экранированных проводов в изоляции.

Блок управления режимами ожидания и приглушения

В этой микросхеме имеется и приглушения. Осуществлять управление функциями нужно при помощи выводов «9» и «10». Включение режима происходит в том случае, если на этих ножках микросхемы нет напряжения, либо оно менее полутора вольт. Чтобы включить режим, необходимо подать на ножки микросхемы напряжение, значение которого превосходит 3,5 В. Чтобы управление платами усилителя происходило одновременно, что актуально для схем, построенных по типу моста, собирается один блок управления для всех каскадов.

Когда усилитель включается, в блоке питания заряжаются все конденсаторы. В блоке управления также один конденсатор накапливает заряд. При накапливании максимально возможного заряда происходит отключение режима ожидания. Второй конденсатор, применяемый в блоке управления, отвечает за функционирование режима приглушения. Он заряжается немного позже, поэтому режим приглушения отключается вторым.

Микросхема TDA7294, представляющая интегральный усилитель низкой частоты, который очень популярен среди электронщиков, как начинающих, так и профессионалов. В сети полно разных отзывов о данной микросхеме. Решил и я собрать усилитель на ней. Схему я взял из даташита.

Питается данная “микруха” двухполярным питанием. Для новичков поясню, что не достаточно иметь “плюс” и “минус”.

Нужен источник с плюсовым выводом, минусовым выводом и общим. Например, относительно общего провода должно быть плюс 30 Вольт, а в другом плече минус 30 Вольт.

Усилитель на TDA7294 достаточно мощный. Максимальная паспортная мощность 100 Вт, но это с нелинейными искажениями в 10% и при максимальном напряжении (в зависимости от сопротивления нагрузки). Надежно снимать можно 70Вт. Таким образом, на свой день рождения я прослушивал две параллельно соединенные колонки “Радиотехника S30” на одном канале TDA 7294. Весь вечер и половину ночи, колонки звучали, иногда вводя их в перегруз. Но усилитель спокойно выдержал, хоть и порой перегревался (из-за плохого охлаждения).

Основные характеристики TDA 7294

Подаваемое напряжение +-10В…+-40В

Пиковый выходной ток до 10А

Рабочая температура кристалла до 150 градусов Цельсия

Выходная мощность при d=0.5%:

При +-35В и R=8Ом 70Вт

При +-31В и R=6Ом 70Вт

При +-27В и R=4Ом 70Вт

При d=10% и повышенном напряжении (смотрите ) можно добиться и 100Вт, но это будут грязные 100Вт.

Схема усилителя на ТДА7294

Приведенная схема взята из паспорта, все номиналы сохранены. При правильном монтаже и правильно выбранных номиналов элементов, усилитель запускается с первого раза и не требует никаких настроек.

Элементы усилителя

Номиналы всех элементов указаны на схеме. Мощность резисторов 0,25 Вт.

Саму “микруху” следует установить на радиатор. Если радиатор соприкасается с другими металлическими элементами корпуса, либо радиатором является сам корпус, то необходимо установить диэлектрическую прокладку между радиатором и корпусом TDA7294.

Прокладка может быть силиконовая или слюдяная.

Площадь радиатора должна составлять не менее 500 кв.см., чем больше, тем лучше.

Изначально я собирал два канала усилителя, так как источник питания позволял, но я не правильно подобрал корпус и оба канала просто не влезли в корпус по габаритам. Пытался я уменьшить печатную плату, но ничего не вышло.

После полной сборки усилителя я понял, что корпуса не достаточно для охлаждения и одного канала усилителя. Корпус у меня являлся радиатором. Короче говоря, раскатал губу на два канала.

При прослушивании моего устройства на полную громкость, кристалл начинал перегреваться, но я убавлял уровень громкости и продолжал тестировать. В итоге, до полуночи слушал я музыку на умеренной громкости, периодически вгоняя усилитель в перегрев. Усилитель на ТДА7294 оказался очень даже надежным.

Режим STAND - BY TDA 7294

Если на 9 ногу подать 3,5В и более, то микросхема выходит из спящего режима, если подать менее 1,5В, то войдет в спящий режим.

Для того, чтобы устройство вывести из спящего режима, нужно 9 ногу через резистор 22 кОм подключить к плюсовому выводу (источника двухполярного питания).

А если 9 ногу через тот же резистор подключить к выводу GND (источника двухполярного питания), то устройство войдет в спящий режим.

Печатная плата, находящаяся под статьей, разведена так, что 9 нога через резистор 22 кОм соединена дорожкой с плюсовым выводом источника питания. Следовательно, при включении источника питания, усилитель сразу же начинает работать не в спящем режиме.

Режим MUTE TDA 7294

Если на 10 ногу TDA7294 подать 3,5В и более, то устройство выйдет из режима приглушения. Если же подать менее 1,5В, то устройство войдет в режим приглушения.

Практически это делается так: через резистор 10 кОм 10 ногу микросхемы подключаем к плюсу двухполярного источника питания. Усилитель “запоет”, то есть не будет приглушен. На печатной плате, которая прикреплена к статье, так сделано с помощью дорожки. При подаче питания на усилитель, он сразу начинает петь, без всяких перемычек и тумблеров.

Если через резистор 10 кОм 10 ногу ТДА7294 соединить с выводом GND источника питания, то наш “усилок” войдет в режим приглушения.

Источник питания.

Источником напряжения для устройства послужил собранный , который себя показал очень даже хорошо. При прослушивании одного канала ключи теплые. Так же теплые и диоды Шоттки, хоть и не установлены на них радиаторы. ИИП без защит и софтстарта.

Схему данного ИИП многие критикуют, но она очень проста в сборке. Работает она надежно без плавного включения. Эта схема очень подходит начинающим электронщикам из-за своей простаты.

Корпус.

Корпус был куплен.

В этой статье я расскажу Вам о такой микросхеме, как TDA1514A

Вступление

Начну немного с печального... В данный момент производство микросхемы прекращено... Но это не значит, что она сейчас "на вес золота", нет. Практически в любом радиомагазине или на радиорынке ее можно достать по цене 100 - 500 рублей. Согласитесь, немного дороговато, но цена абсолютно справедливая! Кстати, на мировых интернет-площадках, таких как и они стоят намного дешевле...

Микросхема отличается низким уровнем искажений и широким диапазоном воспроизводимых частот, поэтому лучше использовать на широкополосных динамиках. Люди, собиравшие усилители на данной микросхеме хвалят ее за высокое качество звучания. Это одна из немногих микросхем, действительно "качественно звучащая". По качеству звука ни чуть не уступает популярным ныне TDA7293/94. Однако, если в сборке допущены ошибки - качественная работа не гарантируется.

Краткое описание и достоинства

Данная микросхема представляет собой одноканальный Hi-Fi - усилитель класса AB, мощность которого составляет 50Вт. В микросхему встроена защита SOAR, термозащита (защита от перегрева) и режим "Mute"

К достоинствам можно отнести отсутствие щелчков при включении и выключении, наличие защит, малые гармонические и интермодуляционные искажения, низкое тепловое сопротивление и другое. Из недостатков выделить практически нечего, кроме как выход из строя при "бегающем" напряжении (питание должно быть более-менее стабильным) и относительно высокая цена

Коротко о внешнем виде

Микросхема выпускается в корпусе SIP с 9 длинными ножками. Шаг ножек составляет 2.54мм. На лицевой стороне надписи и логотип, а на задней теплоотвод - он соединен с с 4 ножкой, а 4 ножка это "-" питания. По бокам 2 проушины для крепления радиатора.

Оригинал или подделка?

Этим вопросом задаются многие, я постараюсь Вам ответить.

Итак. Микросхема должна быть аккуратно выполнена, ножки должны быть гладкими, незначительная деформация допускается, так как неизвестно как обращались с ними на складе или в магазине

Надпись... Она может быть выполнена как белой краской, так и обычным лазером, две микросхемы выше для сравнения (обе оригинальные). В том случае, если надпись нанесена краской, на микросхеме должна ВСЕГДА быть вертикальная полоса, разделенная проушиной. Пусть Вас не смущает надпись "TAIWAN" - ничего страшного, качество звучания у таких экземпляров ни чуть не хуже экземпляров без этой надписи. Кстати, практически половина радиодеталей делается в Тайване и в странах по соседству. Эта надпись находится не на всех микросхемах.

Еще советую обратить внимание на вторую строчку. Если она содержит только цифры (их должно быть 5) - это микросхемы "старого" производства. Надпись на них более широкая, также теплоотвод может иметь другую форму. Если надпись на микросхеме нанесена лазером и вторая строчка содержит только 5 цифр - на микросхеме должна присутствовать вертикальная полоса

Логотип на микросхеме должен присутствовать обязательно и причем только "PHILIPS"! Насколько мне известно, выпуск прекратился задолго до основания NXP, а это 2006 год. Если вы встретили данную микросхему с логотипом NXP, тут одно из двух - микросхему снова начали выпускать или же типичный "левачок"

Также необходимо присутствие впадин в форме кругов, как на фото. Если их нет - подделка.

Возможно есть еще способы выявить "левачок", но не стоит так напрягаться над этим вопросом. Случаев брака - всего единицы.

Технические характеристики микросхемы

* Входное сопротивление и коэффициент усиления подстраивается внешними элементами

Ниже таблица примерных выходных мощностей в зависимости от питания и сопротивления нагрузки

Напряжение питания Сопротивление нагрузки
4 ом 8 ом
10Вт 6Вт
+-16.5В

28Вт

12Вт
48Вт 28Вт
58Вт 32Вт
69Вт 40Вт

Принципиальная схема

Схема взята из даташита (май 1992)

Слишком она громоздкая... Пришлось перерисовать:

Схема немного отличается от предоставленной производителем, все характеристики, приведенные выше - они именно под ЭТУ схему. Отличий несколько и все они направлены на улучшение звука - в первую очередь установлены фильтрующие емкости, убрана "вольтдобавка" (о ней чуть позже) и изменен номинал резистора R6.

Теперь более подробно о каждом компоненте. C1 - входной разделительный конденсатор. Пропускает через себя только переменное напряжение сигнала. Также влияет на частотную характеристику - чем меньше емкость, тем меньше НЧ и соответственно чем больше емкость - тем и НЧ больше. Больше 4.7мкФ ставить не советовал бы, так как производитель предусмотрел всё - при емкости этого конденсатора равной 1мкФ усилитель воспроизводит заявленные частоты. Конденсатор использовать пленочный, в крайнем случае электролитический (неполярный желательно), но никак не керамический! R1 уменьшает входное сопротивление, а вместе с C2 образует фильтр от входных помех.

Как и в любом операционном усилителе здесь можно задать коэффициент усиления. Это делается при помощи R2 и R7. При этих номиналах КУ равен 30дБ (может незначительно отклоняться). С4 влияет на включение защиты SOAR и Mute, R5 влияет на плавную зарядку и разрядку конденсатора, в связи с чем при включении и выключении усилителя отсутствуют щелчки. С5 и R6 образуют так называемую цепь Цобеля. Ее задача - препятствование самовозбуждению усилителя, а также выполнение стабилизации частотной характеристики. C6-C10 подавляют пульсации по питанию, защищают от просадки напряжения.
Резисторы в данной схеме можно брать с любой мощностью, я например использую стандартные 0.25Вт. Конденсаторы на напряжение не менее 35В, кроме С10 - я использую у себя в схеме на 100В, хотя и 63В должно хватить. Все компоненты перед пайкой должны быть проверены на исправность!

Схема усилителя с "вольтдобавкой"

Данный вариант схемы взят из даташита. Отличается от вышеописанной схемы присутствием элементов С3, R3 и R4.
Такой вариант позволит получить до 4Вт больше, чем заявлено (при ±23В). Но при таком включении могут незначительно повысится искажения. Резисторы R3 и R4 применять на 0.25Вт. У меня на 0.125Вт не выдерживали. Конденсатор C3 - 35В и выше.

В данной схеме необходимо использование двух микросхем. Одна дает на выходе положительный сигнал, другая - отрицательный. При таком включении можно снять более 100Вт на 8 Ом.

По словам собравших, данная схема абсолютно работоспособна и у меня даже есть более подробная табличка примерных выходных мощностей. Она ниже:

А если поэксперементировать, например при ±23В подключить нагрузку 4 ом, то можно получить до 200Вт! При условии что радиаторы не будут сильно греться, 150Вт в мост микросхемы потянут легко.

Такую конструкцию неплохо использовать в сабвуферах.

Работа в внешними выходными транзисторами

Микросхема является по сути дела мощным операционным усилителем и его можно умощнить еще, повесив на выход пару из комплиментарных транзисторов. Данный вариант пока не проверялся, но теоретически он возможен. Также можно умощнить и мостовую схему усилителя, повесив на выход каждой микросхеме по паре комплиментарных транзисторов

Работа при однополярном питании

В самом начале даташита я нашел строки, в которых написано, что микросхема работает и при однополярном питании. А где же схема тогда? Увы, в даташите нету, в интернете не нашел... Не знаю, может где-то и существует такая схема, но я такую не видел... Единственное что могу посоветовать - TDA1512 или TDA1520. Звучание отличное, но питаются от однополярного питания, да и выходной конденсатор может слегка подпортить картину. Найти их довольно проблематично, выпускались очень давно и были давно сняты с производства. Надписи на них могут быть различной формы, проверять на "фальшивку" их не стоит - случаев отказа не было.

Обе микросхемы представляют собой Hi-Fi - усилители класса АВ. Мощность около 20Вт при +33В на нагрузку 4 ом. Схемы приводить не буду (тема же все-таки про TDA1514A). Скачать печатные платы для них можно в конце статьи.

Питание

Для стабильной работы микросхемы нужен источник питания с напряжением от ±8 до ±30В с током не менее 1.5А. Питание должно подаваться толстыми проводами, входные провода максимально дальше удалить от выходных проводов и источника питания
Питать можно обычным простым блоком питания, в который входят сетевой трансформатор, диодный мост, фильтрующие емкости и по желанию дроссели. Для получения ±24В необходим трансформатор с двумя вторичными обмотками по 18В с током более 1.5А для одной микросхемы.

Можно использовать импульсные блоки питания, например самый простенький, на IR2153. Вот его схема:

Этот ИБП выполнен по полумостовой схеме, частота 47кГц (устанавливается при помощи R4 и C4). Диоды VD3-VD6 ультрабыстрые или Шоттки

Возможно применение данного усилителя в машине, с использованием повышающего преобразователя. На той же IR2153, вот схема:

Преобразователь выполнен по схеме Push-Pull. Частота 47кГц. Диоды выпрямительные нужны ультрабыстрые или Шоттки. Расчет трансформатора также можно выполнить в ExcellentIT. Дроссели в обоих схемах "посоветует" сама ExcellentIT, Считать их нужно в программе Drossel. Автор программы тот же -

Хочу сказать пару слов о IR2153 - блоки питания и преобразователи получаются довольно неплохие, но в микросхеме не предусмотрена стабилизация выходного напряжения и поэтому оно будет меняться в зависимости от напряжения питания, да и просаживаться будет.

Не обязательно использовать IR2153 и вообще импульсные блоки питания. Можно обойтись проще - как в "старину", обычный трансформатор с диодным мостом и огромными емкостями по питанию. Вот так выглядит его схема:

C1 и С4 не менее 4700мкФ, на напряжение не менее 35В. С2 и С3 - керамика или пленка.

Печатные платы

Сейчас у меня имеется такая коллекция плат:
а) основная - ее можно увидеть на фото снизу.
б) слегка измененная первая (основная). Увеличены в ширине все дорожки, силовые намного шире, элементы слегка передвинуты.
в) мостовая схема. Плата отрисована не совсем удачно, но работоспособна
г) первый вариант ПП - первый пробный вариант, не хватает цепи Цобеля, а так собирал, работает. Есть даже фото (снизу)
д) печатная плата от XandR_man - нашел на форуме сайта "Паяльник". Что сказать... Строго схема из даташита. Более того, я своими глазами видел наборы на основе этой печатки!
Кроме того, Вы можете самостоятельно нарисовать плату, если не устраивают предоставленные.

Пайка

После того, как Вы изготовили плату и проверили все детали на исправность, можно приступать к пайке.
Залудите всю плату, а силовые дорожки лудить как можно более толстым слоем припоя
Первыми впаиваются все перемычки (их толщина должна быть как можно больше в силовых участках), а далее все компоненты по увеличению размера. последней впаивается микросхема. Советую не резать ножки, а впаивать такой, какая она есть. Можно потом согнуть ее для удобства посадки на радиатор.

Микросхема защищена от статического электричества, так что можно паять включенным паяльником, сидя даже в шерстяной одежде.

Однако, необходимо паять так, чтобы микросхема не перегревалась. Для надежности можно во время пайки прицепить за одну проушину к радиатору. Можно за две, разницы тут не будет, лишь бы кристалл внутри не перегрелся.

Настройка и первый запуск

После того, как все элементы и провода впаяны, необходим "тестовый запуск". Прикрутите микросхему на радиатор, замкните входной провод с землей. В качестве нагрузки Вы можете подключать будущие колонки, а вообще, чтобы они не "вылетели" за доли секунд при браке или ошибках в монтаже используют мощный резистор в качестве нагрузки. Если же он вылетает, знайте - Вы допустили ошибку, либо вам попался брак (микросхема имеется ввиду). К счастью, такие случаи почти не происходят, в отличие от TDA7293 и прочих, которых в магазине можно набрать кучу из одной партии и как потом выяснится - все они брак.

Однако, хочу сделать небольшое замечание. Делайте Ваши провода как можно короче. Было такое, что я всего лишь удлинил выходные провода и стал слышать в динамиках гул, похожий на "постоянку". Более того, при включении усилителя из-за "постоянки" динамик выдавал гул, который пропадал через 1-2 секунды. Сейчас у меня из платы выходят провода, максимум 25 см и идут сразу к динамику - усилитель включается бесшумно и работает без проблем! На входные провода тоже обратите внимание - ставьте экранированный провод, длинным его тоже не не стоит делать. Соблюдайте простые требования и у Вас все получится!

Если ничего не произошло с резистором, отключите питание, прикрепите входные провода к источнику сигнала, подключите Ваши колонки и подавайте питание. В динамиках можно услышать небольшой фон - это говорит о том, усилитель работает! Подайте сигнал и наслаждайтесь звучанием (в том случае если все отлично собрано). Если "хрюкает", "пердит" - посмотрите на питание, на правильность сборки, ибо как выявлено в практике - уж таких "гадких" экземпляров нету, которые при правильной сборке и отличном питании криво работали...

Как выглядит готовый усилитель

Вот серия фотографий, сделанных в декабре 2012. Платы как раз после пайки. Тогда я собирал, чтобы убедиться в работоспособности микросхем.




А вот мой первый усилитель, до сегодняшних дней дожила только плата, все детали ушли на другие схемы, а сама микросхема вышла из строя из-за попадания на него переменного напряжения


Ниже свежие фотографии:



К сожалению, мой ИБП на стадии изготовления, а запитывал я микросхему раньше от двух одинаковых аккумуляторов и небольшого трансформатора с диодным мостом и небольшими емкостями по питанию, в итоге было ±25В. Две таких микросхемы с четырьмя колонками от музыкального центра "Sharp" так играли, что даже предметы на столах "танцевали под музыку", окна звенели, да и телом чувствовалась мощность неплохо. Снять этого сейчас не могу, но есть источник питания ±16В, от него до 20Вт на 4 ома можно получить... Вот видео Вам в качестве доказательства, что усилитель абсолютно рабочий!

Благодарности

Огромную благодарность выражаю пользователям форума сайта "Паяльник", а конкретно огромное спасибо пользователю за некоторую помощь, благодарю также , и многих другим (извините что Вас не назвал по никам) за честные отзывы, которые подтолкнули меня на сборку данного усилителя. Без всех Вас данная статья могла быть и не написана.

Завершение

Микросхема обладает рядом достоинств, прекрасным звучанием в первую очередь. Многие микросхемы такого класса могут даже уступать по качеству звучания, но это в зависимости от качественной сборки. Плохая сборка - плохое звучание. Подходите к сборке электронных схем серьезно. Крайне не рекомендую паять данный усилитель навесным монтажем - это может только ухудшить звучание, либо привести к самовозбуждению, а в последствии полного выхода из строя.

Я собрал практически всю информацию, которую проверял сам и мог спросить у других людей,которые собирали данный усилитель. Жаль, что у меня не имеется осциллографа - без него мои высказывания о качестве звука ничего не значат... Но я буду и дальше утверждать, что звучит она просто прекрасно! Собиравшие данный усилитель меня поймут!

Если остались вопросы, пишите мне на форум сайта "Паяльник". по обсуждению усилителей на данной микросхеме, можете спрашивать там.

Надеюсь статья оказалась полезной для Вас. Удачи Вам! С уважением, Юрий.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Схема с вольтдобавкой
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С3 Электролитический конденсатор 220мкФ 1 От 35В и выше В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R3 Резистор

47 Ом

1 Подбирается при настройке В блокнот
R4 Резистор

82 Ом

1 Подбирается при настройке В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Мостовое включение
Микросхема TDA1514A 2 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5, С14, С16 Конденсатор 22 нФ 3 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С13, С15 Электролитический конденсатор 3.3мкФ 2 В блокнот
R1, R7 Резистор

20 кОм

2 В блокнот
R2, R8 Резистор

680 Ом

2 В блокнот
R5, R9 Резистор

470 кОм

2 В блокнот
R6, R10 Резистор

10 Ом

2 Подбирается при настрйоке В блокнот
R11 Резистор

1.3 кОм

1 В блокнот
R12, R13 Резистор

22 кОм

2 В блокнот
Импульсный блок питания
IC1 Драйвер питания и MOSFET

IR2153

1 В блокнот
VT1, VT2 MOSFET-транзистор

IRF740

2 В блокнот
VD1, VD2 Выпрямительный диод

SF18

2 В блокнот
VD3-VD6 Диод Любые Шоттки 4 Ультрабыстрые диоды или Шоттки В блокнот
VDS1 Диодный мост 1 Диодный мост на необходимый ток В блокнот
С1, С2 Электролитический конденсатор 680мкФ 2 200В В блокнот
С3 Конденсатор 10 нФ 1 400В В блокнот
С4 Конденсатор 1000 пФ 1 В блокнот
С5 Электролитический конденсатор 100мкФ 1 В блокнот
С6 Конденсатор 470 нФ 1 В блокнот
С7 Конденсатор 1 нФ 1

Ганичев Г.
г. Москва

Эта статья продолжает ряд публикаций, посвященных усилителям мощности, предлагаемых радиолюбителям фирмой МАСТЕР КИТ. В статью включены две последние разработки – NM2042 (мощный усилитель низкой частоты 140 Вт) и NM2043 (мощный автомобильный мостовой Hi-Fi усилитель низкой частоты 4х77 Вт). Усилители спроектированы с учетом всех необходимых требований и выполнены на современной интегральной элементной базе. Предлагаемые УМ обладают высокими эксплуатационными характеристиками, высокой надежностью, простотой в изготовлении/подключении и оптимальным соотношением цена/качество, что на сегодняшний день является немаловажным фактором. Собрать устройства можно из наборов МАСТЕР КИТ NM2042 и NM2043.

Перед специалистами МАСТЕР КИТ была поставлена, и успешно решена задача по подготовке технической документации и выпуску линейки УНЧ для использования в Hi-Fi звуковой технике. Постепенно номенклатура этих устройств расширяется и дополняется новыми разработками. В этой статье будут рассмотрены две новые разработки - и .

Все предложенные модели усилителей мощности обладают минимальным уровнем собственных шумов, минимальным уровнем нелинейных искажений и широкой полосой воспроизводимых частот. Различаются модели в основном по максимальной выходной мощности, напряжению питания (двуполярное или однополярное “автомобильное” (14.4 В)) числу каналов усиления и внешнему конструктивному исполнению.

Радиолюбители сами могут развести печатную плату, однако нужно учитывать, что это очень ответственная и серьезная работа. Не все знают, что, например, неправильная трассировка печатных проводников в мощном усилителе, может в десятки раз увеличить уровень его нелинейных искажений или даже сделать вообще неработоспособным. Поэтому для разработки печатных плат привлекались профессиональные конструкторы, специализирующиеся в этой области.

. Мощный усилитель низкой частоты 140 Вт (TDA7293).

Предлагаемый усилитель НЧ обладает минимальным коэффициентом нелинейных искажений и уровнем собственных шумов. Устройство имеет небольшие габариты. Широкий диапазон питающих напряжений и сопротивлений нагрузки расширяет область применения этого УМ. Его можно использовать как на открытом воздухе для проведения различных мероприятий, так и в домашних условиях в составе Вашего музыкального аудиокомплекса. Усилитель хорошо зарекомендовал себя как УНЧ для сабвуфера.

УНЧ выполнен на интегральной микросхеме TDA7293. Эта ИМС представляет собой УНЧ класса АВ. Благодаря широкому диапазону питающих напряжений и возможности отдавать ток в нагрузку до 10 А, микросхема обеспечивает одинаковую максимальную выходную мощность на нагрузках от 4 Ом до 8 Ом. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления и возможность параллельного включения нескольких ИМС для работы с низкоомной нагрузкой (< 4 Ом).

Управление режимом работы ИМС осуществляется при помощи переключателя SW1. Для включения УНЧ SW1 необходимо замкнуть. Переключатель SW2 предусмотрен для технологических целей. Для нормальной работы SW2 необходимо перемкнуть в положении 2-3.

Катушку L1 необходимо изготовить самостоятельно. L1 – бескаркасная, трехслойная, содержит по десять витков провода ПЭВ-1.0 в каждом слое. Намотку необходимо вести на оправке 12 мм. Ориентировочная индуктивность – 5 мкГн.

Напряжение питания подается на контакты Х3(+), Х6(-) и Х7(общий).

Источник сигнала подключается к Х1(+) и Х2(общий).

Нагрузка подключается к Х4(+) и Х5(общий).

Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в корпус, для этого предусмотрены монтажные отверстия по краям платы под винты 2.5 мм. Для удобства подключения питающего напряжения, источника сигнала и нагрузки на плате зарезервированы посадочные места под клеммные винтовые зажимы.

Конструктивно предусмотрен сдвоенный логический вход управляющих сигналов MUTE/ST-BY для "мягкого" включения УНЧ.

Микросхему усилителя необходимо установить на теплоотвод (в набор не входит) площадью не менее 600 см2. В качестве радиатора можно использовать металлический корпус или шасси устройства, в которое производится установка УНЧ. При монтаже рекомендуется использовать теплопроводную пасту типа КТП-8, для повышения надежности работы ИМС.

Общий вид усилителя представлен на рис.1, схема электрическая принципиальная на рис.2, схема расположения элементов на плате и подключение усилителя на рис.3, вид печатной платы со стороны проводников на рис.4. Перечень элементов приведен в табл.2.

Таблица 1. Технические характеристики.

Напряжение питания, двуполярное, В +/- 12...50
Пиковое значение выходного тока, А 10
Ток в режиме покоя, мА 30
Ток в режиме MUTE/ST-BY, мА 0,5
Выходная мощность, Вт при коэффициенте гармоник = 1 %, Uп = +/- 30 В, Rн = 4 Ом 80
Выходная мощность, Вт при коэффициенте гармоник = 10 %, Uп = +/- 45 В, Rн = 8 Ом 140
Выходная мощность, Вт при коэффициенте гармоник = 10 %, Uп = +/- 30 В, Rн = 4 Ом 110
Коэффициент усиления Au, дБ 30
Диапазон воспроизводимых частот, Гц 20...20000
Входное сопротивление, кОм 22
Размеры печатной платы, мм 47х55

Таблица 2. Перечень элементов.

Позиция Наименование

Кол.

C1 470 пФ
C2 0,47 мкФ
C3, C10 22 мкФ/63 В
C4, C5 10 мкФ/63 B
C6, C7, C11 0,1 мкФ
C8, C9 1000 мкФ/63 B
DA1 TDA7293
L1 5 мкГн
R1 1 кОм
R2 10 кОм
R3 30 кОм
R4, R5, R9...R12 22 кОм
R6 20 кОм
R7 680 Ом
R8, R14 4,7 Ом
R13 270 Ом
VD1 1N4148

Рис1. Общий вид усилителя NM2042.

Рис.2. Схема электрическая принципиальная усилителя NM2042.

Рис.3. Схема расположения элементов на плате и подключение усилителя NM2042.

Рис.4. Вид печатной платы со стороны печатных проводников усилителя NM2042.

. Мощный автомобильный мостовой Hi-Fi усилитель низкой частоты 4X77 Вт (TDA7560).

Основное назначение этого УНЧ – установка в Вашей автомагнитоле, вместо старого усилителя НЧ, для повышения ее выходной мощности или для проведения мероприятий на открытом воздухе с использованием аккумуляторной батареи 12 В в качестве основного источника питания аппаратуры. Благодаря использованию мостовой схемы включения усилитель развивает мощность до 80 Вт на нагрузке 2 Ом в каждом из четырех каналов. Особенностью усилителя является использование полевых транзисторов в выходных каскадах. Устройство обладает малыми габаритами, широким диапазоном питающих напряжений и сопротивлений нагрузки.

УНЧ выполнен на интегральной микросхеме TDA7560 (DA1). Эта ИМС представляет собой УНЧ класса AВ и устанавливается в авто-аудиоустройствах для получения высококачественного мощного выходного музыкального сигнала. ИМС рассчитана на работу с нагрузкой 4…2 Ом, искажения сигнала удовлетворяют требованиям Hi-Fi. Микросхема имеет защиту от КЗ нагрузки и от перегрева. К особенностям микросхемы следует отнести использование полевых транзисторов в выходных каскадах. Микросхема содержит четыре идентичных мостовых усилителя мощность до 80 Вт на нагрузке 2 Ом.

Переключатели SW1 (ST-BY) и SW2 (MUTE) предназначены для управления режимами работы ИМС. Замыканием контактов в SW1 управляет режимом ST-BY (дежурный/рабочий), а SW2 режимом MUTE (пауза).

Особое внимание следует обратить на подключение микросхемы к источнику питания:

ИМС чрезвычайно чувствительна к напряжению питания – максимум 18 В.

Переполюсовка источника напряжения питания приводит к выходу ИМС из строя (Uобр = 6 В максимум).

Напряжение питания подключается к контактам Х9(+) и Х10(-).

Источники сигнала подключаются к Х1(+),Х2(-);Х3(+),Х4(-);Х5(+),Х6(-);Х7(+),Х8(-).

Усиленный сигнал снимается с контактов Х11, Х12; Х13, Х14; Х15, Х16; Х17, Х18.

Общий вид усилителя представлен на рис.5, схема электрическая принципиальная на рис.6, схема расположения элементов на плате и подключение усилителя на рис.7, вид печатной платы сверху на рис.8, вид печатной платы снизу на рис.9. Перечень элементов приведен в табл.3.

Таблица 3. Технические характеристики.

Таблица 4. Перечень элементов